4 research outputs found

    Performance analysis of large wireless networks: a stochastic geometry approach

    Get PDF
    In recent years, stochastic geometry has emerged as a powerful tool for the modeling, analysis, and design of wireless networks with random topologies. Stochastic geometry has been demonstrated to provide a tractable yet an accurate approach for the performance analysis of wireless networks, when the network nodes are modeled as a Poisson point process. This thesis develops analytical frameworks to study the performance of various large-scale wireless networks with random topologies. Firstly, it develops a mathematical model for the uplink analysis of heterogeneous cellular networks when the base stations have multiple antennas. Further, it studies how the gains of downlink and uplink decoupling can be optimized in such a network. Secondly, this thesis also models, analyzes, and designs an ad-hoc network architecture that utilizes both the wireless power transfer and backscatter communications. The performance of such a network is further compared with a regular powered network. Finally, this thesis for the first time develops a scheduling algorithm for cellular networks that has an information theoretic justification. Then using tools from stochastic geometry, this thesis quantifies the gains of such scheduling algorithm over the traditional scheduling algorithm for the downlink transmission. Furthermore, to find the optimal system parameters that provide the maximum gains, this thesis performs asymptotic analysis and provides a simple optimization algorithm. The accuracy of all the mathematical models have been verified with extensive Monte Carlo simulations.Open Acces

    Downlink and Uplink Decoupling in Two-Tier Heterogeneous Networks With Multi- Antenna Base Stations

    No full text

    Treating Interference as Noise in Cellular Networks: A Stochastic Geometry Approach

    No full text
    International audienceThe interference management technique that treats interference as noise (TIN) is optimal when the interference is sufficiently weak. Scheduling algorithms based on the TIN optimality condition have recently been proposed, e.g., for application to device-to-device communications. TIN, however, has never been applied to cellular networks. In this work, we propose a scheduling algorithm for application to cellular networks that is based on the TIN optimality condition. In the proposed scheduling algorithm, each base station (BS) first randomly selects a user equipment (UE) in its coverage region, and then checks the TIN optimality conditions. If the latter conditions are not fulfilled, the BS is turned off. In order to assess the performance of TIN applied to cellular networks, we introduce an analytical framework with the aid of stochastic geometry theory. We develop, in particular, tractable expressions of the signalto-interference-and-noise ratio (SINR) coverage probability and average rate of cellular networks. In addition, we carry out asymptotic analysis to find the optimal system parameters that maximize the SINR coverage probability. By using the optimized system parameters, it is shown that TIN applied to cellular networks yields significant gains in terms of SINR coverage probability and average rate. Specifically, the numerical results show that average rate gains of the order of 21% over conventional scheduling algorithms are obtained
    corecore